Application of Geometry Expressions to Theorems from Machine Proofs in Geometry

Saltire Software internal Report 2016-1
By Philip Todd philt@saltire.com
In this document we apply Geometry Expressions to a set of theorems from [1]. While not human readable, Geometry Expressions does provide a form of proof. The objective here is to calibrate its performance against this given set of examples.

1 Introduction

The goal in this document is to try and "prove" the theorem using Geometry Expressions. If we cannot, we try to use an external CAS to help. If this fails, we will look at special cases we can try and address. If all fail we will look to improve Geometry Expressions!

Examples are numbered as they appear in the book.
The bulk of this document consists of screenshots taken from Geometry Expressions. These screenshots indicate both the model, which would be input by the user, and the result, constituting the Geometry Expressions proof, which was generated automatically.

Examples 6.1 to 6.207 are treated.

1.1 Results

Example by example comments are given below. In summary, however, of the 207 examples, 196 are solved in a reasonable amount of time on a modern PC by Geometry Expressions, using an initial formulation.

5 examples failed on the initial formulation, but succeeded on a second formulation (6.69, 6.122, 6.149, $6.163,6.182$). In 3 cases ($6.22,6.104,6.200$), the internal Geometry Expressions CAS was unable to simplify the result, but Maple was able to complete the simplification. In 2 cases, the initial formulation failed, but succeeded after supplying a simple intermediate result (6.172, 6.174). In 1 case (6.109) neither Geometry Expressions' CAS nor Maple is able to simplify the result. In 1 case (6.128) the result in the book is incorrect.

2 Geometry of Incidence

2.1 Menelaus Theorem

Without loss of generality, we make A be the origin. AF and BF have been hidden as they are a bit large.
6.1 (Converse of Menelaus Theorem)

Ratio r_{1} is defined to be BD/DC. GX point proportional constraint accepts the ratio $B D / B C$. So we enter $r_{1} /\left(1+r_{1}\right)$.

6.2 Menelaus Theorem for a Quadrilateral

Here we have elected without loss of generality to make A the origin and the line $y=b$.
6.3 Menelaus Theorem for a Quadrilateral (done a little differently)

In this one, we specify the coordinates of the quad points and proportions for B1 and D1, and measure the other proportions. A useful trick is to make one of the coordinates (0,0), which cuts down on the complexity of the results.
6.4 The isotomic points of three collinear points are collinear

Isotomic points are created by reflecting points in segment midpoints. (reflection in a point is done in Geometry Expressions using dilation of scale -1).
2.2 Ceva's Theorem

Here is a direct proof of Ceva's theorem. In fact, here the individual steps of an analytical geometry proof can be seen sketched.
6.5 Converse of Ceva's Theorem

Here we have set H to be the intersection of lines $A D$ and $B E$. We measure its distance to line CF
6.6 Ratios on the Cevian

If $L M N$ is the Cevian Triangle of point S in triangle $A B C$, we have $\frac{S L}{A L}+\frac{S M}{B M}+\frac{S N}{C N}=1$

SN and CN are hidden for clarity.
6.7 Sub triangle areas

If LMN is the Cevian Triangle of point S in triangle $A B C$, we have $\frac{S_{A M L} \cdot S_{B N M} \cdot S_{C L N}}{S_{A N L} \cdot S_{B L M} \cdot S_{C N M}}$

$$
\begin{aligned}
& 1 \\
& 1 \frac{\sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{1}\right) \cdot\left(1+r_{2}\right)}<0 \\
& \left\lvert\, \frac{r_{1} \cdot r_{2} \cdot \sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{1}\right) \cdot\left(1+r_{2}\right)}<0\right. \\
& \frac{S_{A M L} \cdot S_{B N M} \cdot S_{C L N}}{S_{A L N} \cdot S_{B M L} \cdot S_{C N M}} \Rightarrow \left\lvert\, \frac{r_{1} \cdot \sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{1}\right) \cdot\left(1+r_{1} \cdot r_{2}\right)}<0\right. \\
& \left\lvert\, \frac{r_{1} \cdot r_{2} \cdot \sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{1}\right) \cdot\left(1+r_{1} \cdot r_{2}\right)}<0\right. \\
& \left\lvert\, \frac{r_{2} \cdot \sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{2}\right) \cdot\left(1+r_{1} \cdot r_{2}\right)}<0\right. \\
& \left\lvert\, \frac{r_{1} \cdot r_{2} \cdot \sin \left(\theta_{0}-\theta_{1}\right)}{\left(1+r_{2}\right) \cdot\left(1+r_{1} \cdot r_{2}\right)}<0\right.
\end{aligned}
$$

In the above diagram, we have left the coordinates out but specified the Cevian using ratios. Below we do the same thing but leaving out the ratios and constraining all three Cevians to pass through S. In this diagram we do put in coordinates for $A B$ and C, setting $B C$ to lie along the x axis.

$$
\begin{array}{ll}
\Delta S_{A L N} \Rightarrow\left|\frac{-c \cdot(c \cdot x-b \cdot y)}{2 \cdot(-c+y)}+\frac{a \cdot c \cdot y \cdot(c \cdot x-b \cdot y)}{2 \cdot(-c+y) \cdot(b \cdot y-c \cdot(-a+x))}\right| & \Delta S_{A M L} \Rightarrow\left|\frac{c \cdot\left(-a \cdot c^{2} \cdot x+c^{2} \cdot x^{2}+y^{2} \cdot\left(-a \cdot b+b^{2}\right)+y \cdot(a \cdot b \cdot c+a \cdot c \cdot x-2 \cdot b \cdot c \cdot x)\right)}{2 \cdot(c-y) \cdot(-c \cdot x+y \cdot(-a+b))}\right| \\
S_{B M L}=\left|\frac{a \cdot c \cdot y \cdot(c \cdot x-b \cdot y)}{2 \cdot(-c+y) \cdot(-c \cdot x+y \cdot(-a+b))}\right| & \Delta S_{B N M} \Rightarrow\left|\frac{a^{2} \cdot c \cdot\left(-c \cdot x \cdot y+b \cdot y^{2}\right)}{2 \cdot(a \cdot c-c \cdot x+b \cdot y) \cdot(-c \cdot x+y \cdot(-a+b))}\right| \\
S_{C N M} \Rightarrow\left|\frac{a^{2} \cdot c \cdot\left(y^{2} \cdot(a-b)+y \cdot(-a \cdot c+c \cdot x)\right)}{2 \cdot(a \cdot c-c \cdot x+b \cdot y) \cdot(-c \cdot x+y \cdot(-a+b))}\right| &
\end{array}
$$

$$
\begin{aligned}
& 1 \\
& 1 \frac{c \cdot\left(-a \cdot c^{2} \cdot x+c^{2} \cdot x^{2}+y^{2} \cdot\left(-a \cdot b+b^{2}\right)+y \cdot(a \cdot b \cdot c+a \cdot c \cdot x-2 \cdot b \cdot c \cdot x)\right)}{(c-y) \cdot(-c \cdot x+y \cdot(-a+b))}>0 \\
& 1 \frac{c \cdot\left(a \cdot c^{2} \cdot x-c^{2} \cdot x^{2}+y^{2} \cdot\left(a \cdot b \cdot b^{2}\right)+y \cdot(-a \cdot b \cdot c-a \cdot c \cdot x+2 \cdot b \cdot c \cdot x)\right)}{(c-y) \cdot(a \cdot c-c \cdot x+b \cdot y)}>0 \\
& \frac{S_{A M L} \cdot S_{B N M} \cdot S_{C L N}}{S_{A L N} S_{B M L} \cdot S_{C N M}}=1 \frac{a \cdot c \cdot\left(-c \cdot x \cdot y+b \cdot y^{2}\right)}{(c-y) \cdot(-\cdot x+y \cdot(-a+b))}>0 \\
& 1 \frac{c \cdot\left(-c \cdot x \cdot y+b \cdot y^{2}\right)}{(a \cdot c-c \cdot x+b \cdot y) \cdot(-c \cdot x+y \cdot(-a+b))}>0 \\
& 1 \frac{c \cdot\left(y^{2} \cdot(a-b)+y \cdot(-a \cdot c+c \cdot x)\right)}{(a \cdot c-c \cdot x+b \cdot y) \cdot(-c \cdot x+y \cdot(-a+b))}>0 \\
& 1 \frac{a \cdot c \cdot\left(y^{2} \cdot(-a+b)+y \cdot(a \cdot c-c \cdot x)\right)}{(c-y) \cdot(a \cdot c-c \cdot x+b \cdot y)}>0
\end{aligned}
$$

6.8 Ratios of parallels

6.9 More ratios

If $L M N$ is the Cevian triangle of the point S for the triangle $A B C$, we have: $\frac{A S}{S L}=\frac{A M}{M C}+\frac{A N}{N B}$

6.10 Ceva's Theorem for a pentagon

For simplicity, we put point O at the origin. We have hidden 6 similar intermediate results for clarity.
6.11 Isotomics of Cevian point

If the three lines joining three points marked on the sides of a triangle to the opposite vertices are concurrent, the same is true of the isotomics of the given points.

K is defined to be the intersection of $A E^{\prime}$ and $B F^{\prime}$ we measure its distance to $C G^{\prime}$

2.3 The Cross Ratio and Harmonic Points

Let A, B, C, D be four collinear points. The cross ratio denoted $(A B C D)=\frac{C A / C B}{D A / D B}$
6.12 The cross ratio of four points on a line is unchanged by projection

6.13

Two lines $O A B C$ and $O A_{1} B_{1} C_{1}$ intersect at point O . If $(\mathrm{OABC})=\left(\mathrm{OA}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}\right)$ then $\mathrm{AA}_{1}, \mathrm{BB}_{1}, \mathrm{CC}_{1}$ are concurrent.

Point proportional constraints are rigged so that the cross ratio relationship holds. H is the intersection of CC1 and BB1. We measure its distance to line AA1.
6.14

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be four harmonic points and O the midpoint of AB . Then $O C \cdot O D=O A^{2}$

6.15 Converse of 6.14

If O is the midpoint of AB and if C, D are points on the line such that $O C \cdot O D=O A^{2}$ then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are a harmonic sequence.

6.16

The sum of the squares of two harmonic segments is equal to four times the square of the distance between the midpoints of the segments.

6.17

Let A, B, R be three points on a plane, Q and P be points on line $A R$ and $B R$ respectively. S is the intersection of $Q B$ and $A P$. C is the intersection of $R S$ and $A B$. F is the intersection of $Q P$ and $A B$. Show that $(A B C F)=-1$.

6.18

Given $(A B C D)=-1$ and a point O outside the line $A B$; if a parallel through B to $O A$ meets $O C, O D$ in P, Q, we then have $P B=B Q$.

6.19

The converse of 6.18

2.4 Pappus Theorem and Desargues Theorem

6.20 Pappus Theorem

Let $A B C$ and $A_{1} B_{1} C_{1}$ be two lines. Let P be the intersection of $A B_{1}$ and $A_{1} B$. Let Q be the intersection of $A C_{1}$ and $A_{1} C$. Let S be the intersection of $B C_{1}$ and $B_{1} C . P, Q$ and S are collinear.

We could look for the distance between Q and the line PI. Geometry Expressions will return 0 for this but takes a few minutes. Faster is to show that the area of triangle PQI is 0 .

6.21 Dual of Pappus

$C D, E F$ and GH are intersections in pairs between 3 concurrent lines through A and B. Show that CF, GE and DH are concurrent.

We have constrained the locations of A and B and the slopes of all the lines. I is the intersection of $G E$ and CF. We output the perpendicular distance from I to line DH.

6.22 Triples of Pappus Lines are concurrent

In the Pappus configuration we create a line L_{1} joining the intersection of $A_{1} B$ and $A B_{1}$ and the intersection of $C A_{1}$ and $A C_{1}$; line L_{2} joining the intersection of $B C_{1}$ and $A A_{1}$ and the intersection of $B B_{1}$ and $C A_{1}$; line L_{3} joining the intersection of $B B_{1}$ and $A C_{1}$ and the intersection of $B A_{1}$ and $C C_{1}$. Lines L_{1}, L_{2}, L_{3} are concurrent.

In the model, we show the area of $I J K$ is zero. An initial attempt had C at generic location. This produced a rational for the area which took a long time to simplify in Geometry Expressions (30 minutes or so), but which simplified in under a second in Maple.

6.23 Leisening's Theorem

Starting with the diagram from Pappus' Theorem (6.20), let O be the intersection of $A B$ with $A_{1} B_{1}$ and let $L 1, L 2, L 3$ be the intersections of $O P$ and $C C_{1}, O Q$ and $B B_{1}, O S$ and $A A_{1}$ respectively. $L 1, L 2, L 3$ are collinear.

6.24 Desargues' Theorem

Given two triangles $A B C, A_{1} B_{1} C_{1}$, if the three lines $A A_{1}, B B_{1}, C C_{1}$ meet in a point S, define P, Q, and R to be the intersections of $B C$ and $B_{1} C_{1}, C A$ and $C_{1} A_{1}, A B$ and $A_{1} B_{1}$ respectively. Then P, Q, R are collinear.

6.25 Converse of Desargues' Theorem

We constrain P, Q and R to be collinear and put point S at the intersection of $A A_{1}$ and $B B_{1}$. We measure its distance to the line CC_{1}.

2.5 Miscellaneous

6.26

In a hexagon $\mathrm{AC}_{1} \mathrm{BA}_{1} \mathrm{CB}_{1}, \mathrm{BB}_{1}, \mathrm{C}_{1} \mathrm{~A}, \mathrm{~A}_{1} \mathrm{C}$ are concurrent and $\mathrm{CC}_{1}, \mathrm{~A}_{1} \mathrm{~B}, \mathrm{~B}_{1} \mathrm{~A}$ are concurrent. Show $\mathrm{AA}_{1}, \mathrm{~B}_{1} \mathrm{C}$, $\mathrm{C}_{1} \mathrm{~B}$ are also concurrent.

6.27 Nehring's Theorem

Let $A A_{1}, B B_{1}, C C_{1}$ be three concurrent Cevian lines for triangle $A B C$. Let X_{1} be a point on $B C$, $X_{2}=X_{1} B_{1} \cap B A, X_{3}=X_{2} A_{1} \cap A C, X_{4}=X_{3} C_{1} \cap C B, X_{5}=X_{4} B_{1} \cap B A, X_{6}=X_{5} A_{1} \cap A C$,
$X_{7}=X_{6} C_{1} \cap C B$
Show $X_{7}=X_{1}$.

6.28

Let three triangles $A B C, A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}$ be given such that lines $A B, A_{1} B_{1}$ intersect in point P, lines $A C$, $A_{1} C_{1}, A_{2} C_{2}$ intersect in point Q, lines $B C, B_{1} C_{1}, B_{2} C_{2}$ intersect in point R and P, Q and R are collinear. In view of Desargues' Theorem, the lines in each of the triads $A A_{1}, B_{1}, C_{1} ; A_{2}, B B_{2}, C C_{2} ; A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ intersect in a point. Prove that these three points are collinear.

6.29

If (Q) is the cevian triangle of a point M for the triangle (P), show that the triangle formed by the parallels through the vertices of (P) to the corresponding sides of (Q) is perspective to (P)

6.30

If a hexagon $A B C D E F$ has two opposite sides $B C$ and $E F$ parallel to the diagonal $A D$ and two opposite sides $C F$ and $F A$ parallel to the diagonal $B E$, while the remaining sides $D E$ and $A B$ are also parallel, then the third diagonal $C F$ is parallel to $A B$

6.31

Prove that the lines joining the midpoints of three concurrent cevians to the midpoint of the corresponding sides of the given triangle are concurrent

Let O and U be two points in the plane of the triangle $A B C$. Let $A O, B O, C O$ intersect the opposite sides in P, Q, R. Let $P U, Q U, R U$ intersect $Q R, R P, P Q$ respectively in X, Y, Z. Show that $A X, B Y, C Z$ are concurrent.

6.33

Let A_{1}, B_{1}, C_{1} be the feet of Cevians through O in triangle $A B C$. Let A_{2}, B_{2}, C_{2} be collinear points on the line $B C, A C, A B$. The points of intersection of the lines $A A_{2}, B B_{2}, C C_{2}$ with the opposite sides of $A B C$ are collinear.

The sides $B C, C A, A B$ of a triangle $A B C$ are met by two transversals $P Q R, P_{1} Q_{1} R_{1}$. Let X be the intersection of $B C$ and $Q R_{1}$, let Y be the intersection of $C A$ and $R P_{1}$, let Z be the intersection of $A B$ and $P Q_{1}$. Show X, Y, Z are collinear.

6.35

Through the vertices of a triangle ABC lines are drawn intersecting in O and meeting the opposite sides in D, E, F. Prove that the lines joining A, B, C to the midpoints of $E F, F D, D E$ are concurrent.

A transversal cuts the sides $B C, C A, A B$ of triangle $A B C$ in $D, E, F . P, Q, R$ are the midpoints of $E F, F D, D E$, and $A P, B Q, C R$ intersect $B C, C A, A B$ in X, Y, Z. Show that X, Y, Z are collinear.

6.37

The lines $A L, B L, C L$ joining the vertices of a triangle $A B C$ to a point L meet the opposite sides in A_{1}, B_{1}, C_{1}. The parallels through A_{1} to $B B_{1} C C_{1}$ meet $A C, A B$ in P, Q and the parallels through A_{1} to $A C, A B$ meet $B B_{1}$, C_{1} in R, S. Show that P, Q, R, S are collinear.

6.38

Given 5 points A, B, C, D, E with A, B, C collinear. New lines and points of intersection are formed as in the figure. We show (1) AB, GJ, HI are collinear (2) $A B, G K$ and IL are collinear, (3) AB, HL and JK are collinear (do we mean concurrent?).

We have forced $A B$ to lie on the x axis. M, N and O are defined as the intersection of the respective doted lines. Observing that their y coordinates are zero shows that the pairs of dotted line are concurrent with AB.

3 Triangles

3.1 Medians and Centroids
6.39

The line joining the midpoints of two sides of a triangle is parallel to the third side and is equal to one half the length.

6.40 Theorem of Centroid

The three medians of a triangle meet in a point and each median is trisected by this point.

6.41

With the medians of a triangle a new triangle is constructed. The medians of the second triangle are equal to three quarters of the respective sides of the given triangle.

The area of the triangle having for sides the medians of a triangle is equal to three quarters the area of the given triangle.

Show that the line joining the midpoint of a median to a vertex of the triangle trisects the side opposite the vertex considered.

6.44

Show that a parallel to a side of a triangle through the centroid divides the area of the triangle into two parts, in the ratio of $4: 5$

6.45

If L is the harmonic conjugate of the centroid G of a triangle $A B C$ with respect to the ends A, D of the median $A D$, show that $L D=A D$

First we need to work out how to create the harmonic conjugate of the centroid, as this is not a Geometry Expressions function. The centroid is $2 / 3$ of the way down the median. We need to see what location on the median the harmonic conjugate sits at.

Parametric location $t=2$ will do the trick... and will also make $A D=B L$.
6.46

Show that the distances of a point on a median of a triangle from the sides including the median are inversely proportional to these sides.

Show that, if a line through the centroid G of the triangle $A B C$ meets $A B$ in M and $A C$ in N we have AN*MB+AM*NC=AM*AN

6.48

Two equal segments $A E, A F$ are taken on the sides $A B, A C$ of the triangle $A B C$. Show that the median issued from A divides $E F$ in the ratio of the sides $A C, A B$

Show that the algebraic sum of the distances of the vertices of a triangle to a line is the same as the sum of the distances of the midpoints to that line

6.50

Compute the square of the lengths of the medians

If K, $K 1$ are two isotomic points on the side $B C$ of triangle $A B C$, and the line $A K$ meets the line $M N$ in $K 2$, where N and M are the midpoints of $A B$ and $A C$. Show that K1K2 passes through the centroid G of $A B C$

6.52

The sum of the squares of the medians is equal to $3 / 4$ the sum of squares of the sides of the original triangle

6.53

If two points are equidistant from the centroid of a triangle, the sums of the squares of their distances from the vertices of the triangle are equal.

The sum of squares is independent of θ, hence the result.
6.54

The median $A A_{1}$ of triangle $A B C$ meets the side $B_{1} C_{1}$ in P, and $C P$ meets $A B$ in Q. Show that $A B=3 A Q$.

6.55

The sum of squares of the distances of the centroid of a triangle from the vertices is equal to one third the sum of squares of the sides.

6.56

If M is any point in the plane of the triangle $A B C$ and G is the centroid of $A B C$, we have $M A^{2}+M B^{2}+M C^{2}=G A^{2}+G B^{2}+G C^{2}+3 M G^{2}$
$z_{0}: M B^{2}-3 \cdot M G^{2}+d^{2}+e^{2} \Rightarrow \frac{a^{2}+b^{2}+c^{2}}{3} \quad z_{3}:{A G^{2}+B G^{2}+C G^{2} \Rightarrow \frac{a^{2}+b^{2}+c^{2}}{3}}_{3}$
$M B \Rightarrow \sqrt{2 \cdot \sqrt{a^{2} \cdot b^{2}-b^{4}+b^{2} \cdot c^{2}+a^{2} \cdot d^{2}+b^{2} \cdot d^{2}-c^{2} \cdot d^{2} \cdot b^{2} \cdot e^{2}+b^{2} \cdot e^{2}+c^{2} \cdot e^{2}+\sqrt{a+b+c} \cdot \sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{a+b+c} \cdot \sqrt{b+d+e} \cdot \sqrt{b+d-e} \cdot \sqrt{b-d+e} \cdot \sqrt{b+d+e}}}$

If the sides $\mathrm{D}, \mathrm{D}_{1} ; \mathrm{E}, \mathrm{E}_{1} ; \mathrm{F}, \mathrm{F}_{1}$ are isotomic on the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of triangle ABC , the areas of the triangles $D E F, D_{1} E_{1} F_{1}$ are equal.

6.58

Show that the parallels through the vertices A, B, C of the triangle $A B C$ to the medians of this triangle issued from the vertices B, C, A respectively form a triangle whose area is three times the area of the original triangle

Let L, L_{1} and M, M_{1} be two pairs of isotomic points on the two sides $A C$, $A B$ of triangle $A B C$, and L_{2}, M_{2} the traces of the lines $B L, C M$ on the sides $A_{1} C_{1}, A_{1} B_{1}$ of the medial triangle $A_{1} B_{1} C_{1}$ of $A B C$. Show that the triangles $A L_{1} M_{1}, A_{1} L_{2} M_{2}$ are homothetic.

M is the intersection of $L_{1} L_{2}$ and $M_{1} M_{2}$. We show that M lies on $A A_{1}$
6.60

A parallel to the median $A A_{1}$ of the triangle $A B C$ meets $B C, C A, A B$ in the points H, N, D. Prove that the symmetries of H with respect to the midpoints of $N C, B D$ are symmetrical with respect to the vertex A

We see that AH 1 and AH 2 are the same length. Also A lies on the line between H 1 and H 2 .

The parallels to the sides of a triangle $A B C$ through the same point M meet the respective medians in the points P, Q, R. Prove that we have $G P / G A=G Q / G B+G R / G C$

6.63

In a given triangle, the three products of the segments into which the orthocenter divides the altitudes are equal.

The product of the segments into which the side of a triangle is divided by the foot of the altitude is equal to this altitude multiplied by the distance of the side from the orthocenter.

6.65

If p, q, r are the distances of a point inside a triangle $A B C$ from the sides of the triangle, show that $\frac{p}{h_{a}}+\frac{q}{h_{b}}+\frac{r}{h_{c}}=1$.

Specifying the triangle by coordinates allows us to give the location of O by coordinate.

Show that the sum of the distances of a point on the base of an isosceles triangle to its two sides is equal to the altitude on that side.

6.67

The three triangles cut off by the sides of its orthic triangle are similar to the given triangle.

The sides of the orthic triangle meet the sides of the given triangle in three collinear points.

6.69

The altitudes of a triangle bisect the internal angles of its orthic triangle.

We can show that point A lies on the bisector of angle FDE, hence the altitude is the bisector. A simpler method is to examine the two angles directly:

Geometry Expressions fails to simplify it by noticing that the numerator and denominator are identical.

6.70

Let H be the orthocenter of triangle $A B C$. Then the circumcenters of the four triangles $A B H, A C H, H B C$ form a triangle congruent to $A B C$. The sides are parallel.

6.71

Continuing from Example 6.70, show that H is the circumcenter of IJK.

By inspection, the three lengths $\mathrm{HI}, \mathrm{HJ}, \mathrm{HK}$ are the same.
6.72

Show that the three perpendiculars to the sides of a triangle at the points isotomic to the foot of the respective altitudes are concurrent.

6.73

Show that the symmetries of the foot of the altitude to the base of the triangle with respect to the other two sides lie on the side of the orthic triangle relative to the base.

D^{\prime} is the image of D under reflection in $A B$. We show the distance from D^{\prime} to line $E F$ is 0 .
6.74

Show that the product of the segments into which a side of a triangle is divided by the corresponding vertex of the orthic triangle is equal to the product of the sides of the orthic triangle passing through the vertex considered.

6.75

If P, Q are the feet of the perpendiculars from the vertices B, C of the triangle $A B C$ on the sides $D F, D E$ respectively, of the orthic triangle DEF, show that $E Q=F P$.

6.76

The four projections of the foot of the altitude on a side of a triangle upon the other two sides and the other two altitudes are collinear.

6.77
$D P, D Q$ are perpendiculars from the foot D of the altitude $A D$ of the triangle $A B C$ on the sides $A C, A B$. Prove that the points B, C, P, Q are cyclic.

We put a circle through B, Q, C then show that P is the same distance from the center of this circle.

6.78

The perpendiculars $D P, D Q$ dropped from the foot D of the altitude $A D f$ the triangle $A B C$ upon the sides $A B, A C$ meet the perpendiculars $B P, C Q$ erected to $B C$ at B, C in the points P, Q respectively. Prove that the line PQ passes through the orthocenter H of $A B C$

6.79

The algebraic sum of the distances of the points of an orthocentric group from any line passing through the nine-point center of the group is equal to zero.

6.80

If through the midpoints of the sides of a triangle having its vertices on the altitudes of a given triangle, perpendiculars are dropped to the respective sides of the given triangle, show that the three perpendiculars are concurrent.

6.81

Show that the perpendiculars dropped from the orthocenter of a triangle upon the lines joining the vertices to a given point meet the respectively opposite sides of the triangle in three collinear points.

Show that the line joining a given point to the vertex of a given angle has for its isogonal line the mediator of the segment determined by the symmetries of the given point with respect to the sides of the angle.

If circles are constructed on two Cevians as diameters, their radical axis passes through the orthocenter H of the triangle.

In triangle $A B C$, let F be the midpoint of the side $B C, D$ and E the feet of the altitudes on $A B, A C$ respectively. $F G$ is perpendicular to $D E$ at G. Show that G is the midpoint of $D E$.

6.85

Let E and F be the midpoints of $A C$ and $A B$, and D the foot of the altitude from A to $B C$. Show that the triangle DEF is congruent to the Euler triangle of ABC . (The Euler triangle has vertices on the altitudes of the triangle midway between the vertex and the orthocenter.)

2.3 The Circumcircle

6.86

The angle between the circumdiameter and the altitude issued from the same vertex of a triangle is bisected by the bisector of the angle of the triangle at the vertex considered.

The product of two sides of a triangle is equal to the altitude to the third side multiplied by the circumdiameter.

6.88

Prove that the circumcenter of a triangle is the orthocenter of its medial triangle

The area of a triangle is equal to the product of its three sides divided by the double circumdiameter of the triangle

6.90

The radii of the circumcircle passing through the vertices of a triangle are perpendicular to the corresponding sides of the orthic triangle

6.91

Let $A B C$ be a triangle with $A C=A B$. D is a point on $B C$. Line $A D$ meets the circumcircle of $A B C$ at E. Show that $A B^{2}=A D . A E$

6.92

Let C be the midpoint of the $\operatorname{arc} A B$ of circle (O). D is a point on the circle. E is the intersection of $A B$ and $C D$. Show that $C A^{2}=C E . C D$.

The distance of a side of a triangle from the circumcenter is equal to half the distance of the opposite vertex from the orthocenter.

The ratio of a side of a triangle to the corresponding side of the orthic triangle is equal to the ratio of the circumference to the distance of the side considered from the circumcenter.

6.95
H is the orthocenter of triangle $A B C$ and O is the circumcenter.
$A H^{2}+B C^{2}=4 O A^{2}$

The circumdiameters $A P, B Q, C R$ of a triangle $A B C$ meet the sides $B C, C A, A B$ in the points K, L, M. Show that $\frac{K P}{A K}+\frac{L Q}{B L}+\frac{M R}{C M}=1$

6.97

The mediators of the sides $A C, A B$ of the triangle $A B C$ meet the sides $A B, A C$ in P and Q. Prove that the points B, C, P, Q lie on a circle.

$$
\left.\begin{aligned}
& \frac{a \cdot b^{2} \cdot c^{2}}{\sqrt{a+b+c} \cdot \sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{a+b+c} \cdot\left(-a^{2}+b^{2}+c^{2}\right)} \\
r \Rightarrow & \mid b^{2}+c^{2}>a^{2}
\end{aligned} \quad \right\rvert\, \frac{-a^{2} \cdot c+c^{3}}{-a^{2}+b^{2}+c^{2}}>0 \text {. }
$$

The two tangents to the circumcircle of $A B C$ at A and C meet at E. The mediator of $B C$ meets $A B$ at D. Show that DE is parallel to BC.

The lines tangent to the circumcircle of a triangle at the vertices meet opposite sides in three collinear points (the Lemoine axis of the triangle).

The distances from a point on the symmedian of a triangle to the two including sides are proportional to those sides.

6.101

The distances of the vertices of a triangle from the Lemoine axis are proportional to the squares of the respective altitudes.

Show that the vertices of the tangential triangle of $A B C$ are the isogonal conjugates of the anticomplementary triangle of ABC

6.103

If two lines are antiparallel with respect to an angle, the perpendiculars dropped upon them from the vertex are isogonal in the angle considered.

6.104

Show that the four perpendiculars to the sides of an angle at four cyclic points form a parallelogram whose opposite vertices lie on isogonal conjugate lines with respect to the angle

These two are not self-evidently equal and require some significant Maple processing to show that they are.

6.105

The perpendicular at the orthocenter H to the altitude HC of the triangle ABC meets the circumcircle of $H B C$ in P. Show that ABPH is a parallelogram.

6.106

The tangential and orthic triangles of a given triangle are homothetic

6.107

Let P be the midpoint of AH. Show that the segment OP is bisected by the median AM.

6.108

Prove that HM (see above) passes through the diametric opposite of A on the circumcircle

6.109

Show that the product of the distances of a point of the circumcircle of a triangle from the sides of a triangle is equal to the product of the distances of the same point from the sides of the tangential triangle.

We fail on this one, note that the distance from E to the tangential triangle is nice and simple, but the distance to the internal triangle is not.
6.110

If O is the circumcenter of the triangle $A B C$ and G is its centroid we have

$$
3 O A^{2}=G A^{2}+G B^{2}+G C^{2}+3 O G^{2}
$$

6.111

The internal and external bisectors of an angle of a triangle pass through the ends of the circumdiameter which is perpendicular to the side opposite the vertex considered

6.112

The segment of the altitude extended between the orthocenter and the second point of intersection with the circumcircle is bisected by the corresponding side of the triangle

6.113

The circumcircle of the triangle formed by two vertices and the orthocenter of a given triangle is equal to the circumcircle of the given triangle

6.114

A vertex of a triangle is the midpoint of the arc determined on its circumcircle by the two altitudes, produced, issued from the two other vertices

We check that O lies on the perpendicular from C to IK .
The result was not so reasonable when the model was constrained by 3 line lengths.
6.115

If O is the circumcenter and H the orthocenter of a triangle $A B C$, and $A H, B H, C H$ meet the circumcircle in D, E, F, prove that the parallels through D, E, F to $O A, O B, O C$ respectively meet in a point.

Show that the foot of the altitude to the base of a triangle and the projections of the ends of the base on the circumdiameter passing through the opposite vertex of the triangle determine a circle having for center the midpoint of the base,

6.117

Show that the symmetric of the orthocenter of a triangle with respect to a vertex, and the symmetric of that vertex with respect to the midpoint of the opposite side, are collinear with the circumcenter of the triangle.

6.118

If $D 1$ is the second point of intersection of the altitude $A D$ of the triangle $A B C$ with the circumcircle, center O , and P is the trace on $B C$ of the perpendicular from D1 to $A C$. Show that the lines AP, AO make equal angles with the bisector of the angle DAC

6.119

Show that the triangle formed by the foot of the altitude to the base and the midpoints of the altitudes to the lateral sides is similar to the given triangle , its circumcircle passes through the orthocenter of the given triangle and through the midpoint of its base.

First the similarity

$z_{4}: \frac{H G}{G D} \Rightarrow \frac{b}{a}$

Now the points lying on a circle

6.120

The sides of the anticomplementary triangle of the triangle $A B C$ meet the circumcircle of $A B C$ in the points P, Q, R. Show that the area of the triangle PQR is equal to four times the area of the orthic triangle of $A B C$

6.121

Through the orthocenter of the triangle $A B C$ parallels are drawn to the sides $A B, A C$, meeting $B C$ in D, E. The perpendiculars to $B C$ at D, E meet $A B, A C$ in two points $D 1, E 1$ which are collinear with the diametric opposites of B, C on the circumference of $A B C$.

6.122

If the altitudes $A D, B E, C F$ of the triangle $A B C$ meet the circumcircle of $A B C$ in P, Q, R, show that we have $\frac{A P}{A D}+\frac{B Q}{B E}+\frac{C R}{C F}=4$

We get as far as the individual ratios, and although one can see that adding these would be on a common denominator, when you create the sum as an expression ... it ends up not simplifying (because we go back to the original expression...

But re-constrain using angles and we get the solution we are looking for:

6.123

Through the point of intersection of the tangents DB, DC to the circumcircle (O) of the triangle ABC a parallel is drawn to the line touching (O) at A. If this parallel meets $A B, A C$ in E, F show that D bisects $E F$.

6.124

In a triangle $A B C$ let p and q be the radii of two circles through A touching side $B C$ at B and C respectively. Then $p . q=R^{2}$ (where R is the circumradius).

6.125

The parallel to the side $A C$ through the vertex B of the triangle $A B C$ meets the tangent to the circumcircle (O) of $A B C$ at C in $B 1$, and the parallel through C to $A B$ meets the tangent to (O) at B in $C 1$. Prove that $\mathrm{BC}^{2}=\mathrm{BC} 1 . \mathrm{B} 1 \mathrm{C}$

6.126

Show that the foot of the perpendicular from the orthocenter of a triangle upon the line joining a vertex to the point of intersection of the opposite side with the corresponding side of the orthic triangle lies on the circumcircle of the triangle.

This one was nasty when I constrained with line lengths. Coordinates did the trick, though.

2.3.4 The Euler Line

The circumcenter O , orthocenter H and centroid G of a given triangle are collinear and the line is called the Euler Line of the triangle.

6.127

Let O and H be the circumcenter and orthocenter of a triangle $A B C$. Show that $O H^{2}=9 R^{2}-a^{2}-b^{2}-c^{2}$

6.128

With the usual notations for the triangle $A B C$ we have:
$4 A O^{2}=4 A B^{2}+4 A C^{2}+4 B C^{2}+G H^{2}$

It looks like the problem as stated is wrong and is missing the denominator in the coefficients of $A B, A C$ and $B C$.
6.129

With the usual notations for the triangle $A B C$ we have:
$9 A O^{2}=A B^{2}+A C^{2}+B C^{2}+O H^{2}$

6.130

With the usual notations for the triangle $A B C$ we have:
$12 \mathrm{AO}^{2}=A \mathrm{~B}^{2}+\mathrm{AC}^{2}+\mathrm{BC}^{2}+\mathrm{AH}^{2}+\mathrm{BH}^{2}+\mathrm{CH}^{2}$

6.131

The homothetic center of the orthic and the tangential triangles of a given triangle lies on the Euler line of the given triangle (see 6.106)

We show that the distance of K from the line joining O and H is zero.
6.132

The Euler Lines of the four triangles of an orthocentric group are concurrent.

6.133

Show that the perpendiculars from the vertices of a triangle to the lines joining the midpoints of the respectively opposite sides to the orthocenter of the triangle meet these sides in three points of a straight line perpendicular to the Euler line of the triangle.

2.3.5 The Nine Point Circle

The midpoints of the segments joining the orthocenter of a triangle to its vertices are called the Euler Points of the triangle. The three Euler Points determine the Euler Triangle.

6.134 The Nine Point Circle Theorem

In a triangle, the midpoints of the sides, the feet of the altitudes and the Euler Points lie on the same circle.

The circle (N) id through the feet of the altitudes. Q is an Euler point and M a midpoint. We show that MN and QN are the same as the radius.

6.135 Feuerbach's Theorem

The nine-point circle of a triangle touches each of the four tritangent circles of the triangle.

K is the intersection of the lines joining the centers of the circles with the nine point circle. We show that this is perpendicular to the tangent at K.
6.136

The radius of the nine-point circle is equal to half the circumradius of the triangle

6.137

The nine-point circle center lies on the Euler line midway between the circumcenter and the orthocenter.

We show that N lies on HO and that $\mathrm{HN}=\mathrm{NO}$.

6.138

Show that the foot of the altitude of a triangle on a side, the midpoint of the segment of the circumdiameter between this side and the opposite vertex and the nine point center are collinear

The center of the nine-point circle is the midpoint of a Euler point and the midpoint of the opposite side.

Both points lie on the 9-point circle, so all we need to show is that the center lies on the chord between the points.
6.140

The two pairs of points O and N, G and H separate themselves harmonically.

6.141

If P is the symmetric of the vertex A with respect to the opposite side $B C$, show that $H P$ is equal to 4 times the distance of the nine-point center from $B C$

$$
\begin{aligned}
& H P \Rightarrow \frac{-a^{4}+a^{2} \cdot b^{2}-c^{4}+c^{2} \cdot\left(2 \cdot a^{2}+b^{2}\right)}{b \cdot \sqrt{a+b+c} \cdot \sqrt{(a+b-c) \cdot(a-b+c) \cdot(-a+b+c)}} \\
&-c^{5}+c^{3} \cdot\left(2 \cdot a^{2}+b^{2}\right)+c \cdot\left(-a^{4}+a^{2} \cdot b^{2}\right)>0
\end{aligned} \quad \begin{aligned}
N A C \Rightarrow & \frac{-\left(a^{4}-a^{2} \cdot b^{2}+c^{4}+c^{2} \cdot\left(-2 \cdot a^{2}-b^{2}\right)\right)}{4 \cdot b \cdot \sqrt{a+b+c} \cdot \sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{a+b+c}} \\
& \frac{a^{4}-a^{2} \cdot b^{2}+c^{4}+c^{2} \cdot\left(-2 \cdot a^{2}-b^{2}\right)}{\sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{a+b+c}}<0
\end{aligned} \quad \begin{aligned}
& Z_{0}: \frac{H P}{\text { NAC } \Rightarrow} \Rightarrow \frac{a^{4}-a^{2} \cdot b^{2}-2 \cdot a^{2} \cdot c^{2}-b^{2} \cdot c^{2}+c^{4}}{\sqrt{a+b-c} \cdot \sqrt{a-b+c} \cdot \sqrt{a+b+c}}<0 \\
& -a^{4} \cdot c+2 \cdot a^{2} \cdot c^{3}-c^{5}+b^{2} \cdot\left(a^{2} \cdot c+c^{3}\right)>0
\end{aligned}
$$

Q
6.142

Show that the square of the tangent from a vertex of a triangle to the nine-point circle is equal to the altitude issued from that vertex multiplied by the distance of the opposite side from the circumcenter.

$$
\frac{a \cdot c}{\sqrt{a^{2}-2 \cdot a \cdot b+b^{2}+c^{2}}}
$$

6.143

Show that the symmetric of the circumcenter of a triangle with respect to a side coincides with the symmetric of the vertex opposite the side considered with respect to the nine-point center of the triangle.

P is the image of O under reflection in $A C$. We show that N lies on $B P$ and that $B N=P N$.

2.3.6 Incircles and Excircles

6.144 Theorem of Incenter

The three internal bisectors of the angles of a triangle meet in a point, the incenter I of the triangle

6.145

Two tritangent centers of a triangle are the ends of a diameter of a circle passing through the two vertices of the triangle which are not collinear with the centers considered.

6.146

The four tritangent centers of a triangle lie on six circles which pass through the pairs of vertices of the triangle and have for their centers the midpoints of the arcs subtented by the respective sides of the respective sides of the tringle on its circumcircle.

We use the same way of creating the center K as the book, relying on a theorem (6.111) that the angle bisector hits the circumcircle in the point described.

However, we can use this formulation (putting K on the circumcircle and constraining OK to be perpendicular to BC :

6.147

Let incircle (with center I) of triangle $A B C$ touch the side $B C$ at X and M be the midpoint of this side. Then line MI bisects AX.

This one required the model to be pushed so that $B C$ were on the x axis.
6.148

The product of the distances of two tritangent centers of a triangle from the vertex of the triangle collinear with them is equal to the product of the two sides of the triangle passing through the vertex considered.

6.149

Show that the external bisector of an angle of a triangle is parallel to the line joining the points where the circumcircle is met by the external (internal) bisectors of the other two angles of the triangle

6.150

The product of the four tritangent radii of a circle is equal to the square of its area

6.151

In a triangle $A B C$, the bisector of angle A meets $B C$ at L and the circumcircle of triangle $A B C$ at N. Thhhe feet of the perpendiculars from L to $A B$ and $A C$ are K and M. Show that the area of $A B C$ equals the area of AKNM.

The points of contact of a side of a triangle with the incircle and the excircle relative to this side are two isotomic points

6.153
(I) is the incircle, (J) the excircle defined by side BC. The distance between the points of contact of (I) and (J) with $A C$ (extended) is the same as the length of $B C$.

6.154
(I) is the excircle defined by $A B,(J)$ the excircle defined by side $B C$. The distance between the points of contact of (I) and (J) with $B C$ (extended) is the same as the length of $A C$.

The ratio of the area of a triangle to the area of the triangle determined by the points of contact of the sides with the incircle is equal to the ratio of the circumdiameter of the given triangle with its inradius.

6.156

Show that a parallel through a tritangent center to a side of a triangle is equal to the sum or difference of the other two sides of the triangle between the two parallel lines considered.

6.157

If X, Y and Z are the points of contact between the incircle and the triangle opposite A, B, C respectively. Show that AZ.BX.CY = r times the area of the triangle

Visually we can see that the identity holds, but when we ask Geometry Expressions to compute the product of the lengths, because it goes back to the unsimplified expression, it does not give the good answer!

6.158

The projection of the vertex B of the triangle $A B C$ upon the internal bisector of the angle A lies on the line joining the points of contact of the incircle with the sides $B C$ and $A C$

6.159

The midpoint of a side of a triangle, the foot of the altitude on this side, and the projections of the ends of this side upon the internal bisector of the opposite angle are four cyclic points.

We put the circle through E, F, G and check that DH is the same as the radius.

6.160

Show that the midpoint of an altitude of a triangle, the point of contact of the corresponding side with the excircle relative to that side and the incenter of the triangle are collinear

6.161

The internal bisectors of the angles B, C of the triangle $A B C$ meet the line $A X$, joining A to the point of contact of BC with the excircle relative to this side in the points L, M. Prove that $\frac{A L}{A M}=\frac{A B}{A C}$.

6.162

Show that the product of the distances of the incenter of a triangle from the three vertices of the triangle is equal to $4 \mathrm{Rr}^{2}$

We have the problem that the ratio comes out as -1 . This is due to expressions not getting sensible witness values and needs fixed!

6.163

If the line $A X$ joining the vertex of a triangle $A B C$ with the point of contact X of the side $B C$ with the incircle meets the circle again in X 1 , show that $\mathrm{AX} . \mathrm{AX1} \mathrm{BC}=.4 \mathrm{rS}$ where r, S are the incircle radius and area of $A B C$.

Defining this problem in the usual way, we did not get a resolution. So we resorted to defining it the way the book does, where the points A, B, I are independent.

Note however, that we are stumped in our simplification by the system not resolving $(a-b)^{*}(b-a)$ into $-(b-a)^{\wedge} 2$
6.164

If h, m and t are the altitude, the median and the internal bisector issued from the same vertex of a triangle whose circumradius is R. Show that $4 R^{2} h^{2}\left(t^{2}-h^{2}\right)=t^{4}\left(m^{2}-h^{2}\right)$

6.165

The external bisectors of the angles of a triangle meet the opposite sides in 3 collinear points

6.166

Prove that the triangle formed by the points of contact of the sides of a given triangle with the excircles corresponding to these sides has the same area with the triangle formed by the points of contact of the sides of the triangle with the inscribed circle.

This one had problems simplifying when we used the usual $\mathrm{a}, \mathrm{b}, \mathrm{c}$ definition of the triangle, but worked out when we constrained it with 2 sides and an angle.

6.167 Gergonne Point

Show that the lines joining the vertices of a triangle with the points of contact of the opposite sides with the inscribed circle are concurrent (The Gergonne Point)

6.168 The Nagel Point

The lines joining the vertices of a triangle to the points of contact of the opposite sides with the excircles relative to those sides are concurrent (the Nagel Point)

6.169

Show that the line joining the incenter of the triangle $A B C$ to the midpoint of the segment joining A to the Nagel Point of ABC is bisected by the median issued from A.

This one did not work out. Simplification not sufficient. Nor was it good enough in Maple.

6.170

The sides $A B, A C$ intercept the segments $D E, F G$ on the parallels to the side $B C$ through the tritangent centers I and J. Show that $\frac{2}{B C}=\frac{1}{D E}+\frac{1}{F G}$

6.171

Show that the perpendiculars to the internal bisectors of a triangle at the incenter meet the respective sides in three points lying on a line perpendicular to the line joining the incenter to the circumcenter of the triangle

This one needed constrained by coordinates.

6.172

The side $B C$ of the triangle $A B C$ touches the incircle (I) in X and the excircle (J) relative to $B C$ in Y. Show that the line $A Y$ passes through the diametric opposite Z of X in (I).

This one was not working, so we had to get creative... using a previous result that the distance BX is $\frac{a-b+c}{2}$

Could this be built in?
6.173

With the notation of 6.172 , and with M the midpoint of $B C$ show that if the line $M I$ meets the altitude $A D$ of $A B C$ in P then $A P$ is equal to the inradius of $A B C$.

$z_{3}: \left.\frac{A P}{R} \Rightarrow \quad 1 \quad \right\rvert\, 2 \cdot b \cdot c \cdot \cos (\theta)<b^{2}+c^{2}+b \cdot \sqrt{b^{2}+c^{2}-2 \cdot b \cdot c \cdot \cos (\theta)}+c \cdot \sqrt{b^{2}+c^{2}-2 \cdot b \cdot c \cdot \cos (\theta)}$

We needed to constrain with an angle to get this one to simplify. Can we somehow force factoring of Heron's formula?
6.174

With the notations of 6.172 , if the parallels to $A Y$ through B and C meet the bisectors Cl and BI in L, M show that LM is parallel to $B C$.

Again we used the hack of 6.172 , remembering the distance of CY .
6.175

Show that the trilinear polar of the incenter of a triangle passes through the feet of the external bisectors and this line is perpendicular to the line joining the incenter and circumcenter

The diagram shows the second part of the theorem.

Here is the first part: we show that point X lies on the external bisector at A .

Show that the mediators of the internal bisectors of the angles of a triangle meet the respective sides of the triangle in 3 collinear points

6.177

Show that the lines joining the vertices of a triangle to the projections of the incenter upon the mediators of the respectively opposite sides meet in a point - the isotomic conjugate of the Gergonne Point of the triangle.

Llies on BJ. So does D' the reflection of D in the perpendicular bisector of AC. Hence and by symmetric arguments on the other sides, L is the isotomic conjugate of the Gergonne point G.
6.178

Show that the line AI meets the sides $X Y, X Z$ in two points P, Q inverse with respect to the incircle $(I)=$ $X Y Z$. And the perpendiculars to Al at P, Q pass through the vertices B, C of the given triangle ABC .

Here is the proof of the second part.

Definition

The symmetric of a median of a triangle with respect to the internal bisector issued from the same vertex is the symmedian of the triangle.
6.179

The three symmedians of a triangle are concurrent (The Lemoine Point, or the Symmedian Point).

6.180

The three symmetrics of the three lines joining a point and the three vertices of a triangle with respect to the internal bisectors issued from the same vertices are concurrent (the isogonal conjugate point).

2.3.7 Intercept Triangles

Let L, M, N be three points on the sides $B C, C A, A B$ of triangle $A B C$. Then triangle $L M N$ and the triangle determined by lines $A L, B M$ and $C N$ are called the intercept triangles of triangle $A B C$ for points L, M, N.
6.181

Let D, E, F be points on the sides $B C, C A, A B$ of a triangle $A B C$ such that $B D / B C=C E / C A=A F / A B=1 / 3$.

Show the area of the triangle determined by the lines $A D, B E, C F$ is one seventh the area of triangle $A B C$.

6.182

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be points on the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of a triangle ABC such that $B D / B C=C E / C A=A F / A B=r$.
Show the ratio of area of the triangle determined by the lines $A D, B E, C F$ to the area of triangle $A B C$ is $\frac{(2 \cdot r-1)^{2}}{r^{2}-r+1}$

We had to use the angle here to prevent the Heron's version of the area getting tangled up in the simplification.
6.183

Using the above notation if $\frac{B D}{D C}=p, \frac{C E}{E A}=q, \frac{A F}{F B}=r$, then the ratio of areas is $\frac{(p q r-1)^{2}}{(q p+p+1)(r p+r+1)(r q+q+1)}$

6.184

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be points proportion r along sides BC, CA and AB . Let $\mathrm{G}, \mathrm{H}, \mathrm{I}$ be points proportion (1-r) along sides $D E, E F, F G$. Show triangles $A B C$ and $G H I$ are homothetic

We show that the intersection of AG and BH lies on line Cl .
In fact the center of the homothetic center is the centroid of ABC as is obvious from the coordinate picture

6.185

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be points an equal proportion along sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of triangle ABC . Show that the centroid of $D E F$ is the centroid of $A B C$

6.186

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the same as in example 6.185. Show that the centroid of the triangle formed by $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ coincides with the centroid of $A B C$.

6.187

Through each of the vertices of the triangle ABC, we draw two lines dividing the opposite sides into three equal parts. These six lines determine a hexagon. Prove that the diagonals joining opposite sides of the hexagon meet in a point.

6.188

Let M, N, P be points on sides $A B, B C, A C$ of a triangle $A B C$. Show that if $M 1, N 1, P 1$ are points on sides $A C, B A$ and $B C$ such that $M M 1$ is parallel to $B C, N N 1$ is parallel to $C A$ and PP1 is parallel to $A B$, then triangles MNP and M1N1P1 have the same areas.

6.189

Three parallel lines drawn through the vertices of a triangle ABC meet the respectively opposite sides in the points X, Y, Z. Show that area $X Y Z$ is twice area $A B C$.

6.190

Two doubly perspective triangles are in fact triply perspective

2.3.8 Equilateral triangles

6.191 The Napoleon Triangle

If equilateral triangles are erected externally (or internally) on the sides of any triangle, their centers form an equilateral triangle.

6.192

Continuing the above example, show that AM, BN and CO are concurrent

6.193

The above example is true for similar isosceles triangles.

6.194

Let the centers of the equilateral triangles erected externally be $\mathrm{M}, \mathrm{N}, \mathrm{O}$, and internally $\mathrm{P}, \mathrm{Q}, \mathrm{R}$. The area of $A B C$ is the difference of the areas of MNO and PQR

6.195

Let equilaterals $B C D, A B F$ and $A C E$ be erected externally on the sides of triangle $A B C$. Show that $A D=C F=B E$

2.3.9 Pedal Triangles

From a point P three perpendicular lines are drawn to the sides of a triangle. The triangle whose vertices are the feet of these perpendiculars is called the pedal triangle of point P with respect to the given triangle
6.196

The orthogonal projections of D on $B C, A C$ and $A B$ are E, F, G respectively. Let O be the circumcenter of the triangle. Show that $D O^{2}=A O^{2}\left(1-\frac{4 E F G}{A B C}\right)$

Used coordinates on this one, but do not get a simplification. However, if I copy and paste the result into a new Expression, I do get the simplification. This should be investigated.

6.197

Let K be the area of the pedal triangle of the orthocenter of $A B C$. What is the ratio of K to $A B C$?

Maple gave us factors:

$>$ factor $\left(1 / 4 *\left(-a^{\wedge} 6+b^{\wedge} 2 * a^{\wedge} 4+b^{\wedge} 4 * a^{\wedge} 2-b^{\wedge} 6-c^{\wedge} 6+\left(a^{\wedge} 2+b^{\wedge} 2\right) * c^{\wedge} 4+\left(a^{\wedge} 4-\right.\right.\right.$ $\left.\left.\left.2 * b^{\wedge} 2 * a^{\wedge} 2+b^{\wedge} 4\right) * c^{\wedge} 2\right) / c^{\wedge} 2 / b^{\wedge} 2 / a^{\wedge} 2\right)$;

$$
-\frac{\left(b^{2}+a^{2}-c^{2}\right)\left(-b^{2}+a^{2}+c^{2}\right)\left(-b^{2}+a^{2}-c^{2}\right)}{4 c^{2} b^{2} a^{2}}
$$

Which are in the form of the book.
6.198

Let K be the area of the pedal triangle of the centroid of $A B C$ and R the circumradius of $A B C$.
Show that $\frac{K}{A B C}=\frac{A B^{2}+B C^{2}+A C^{2}}{36 R^{2}}$

6.199

Let K be the area of the pedal triangle of the circumcenter of $A B C$. Show that the area of $A B C$ is $4 K$.

6.200

Let K be the area of the pedal triangle of the incenter of ABC . Show that $\frac{K}{A B C}=\frac{r}{2 R}$

Maple factored this into a workable form:
$>$ factor $\left(1 / 4\right.$ * $\left(-a^{\wedge} 3+b * a^{\wedge} 2+b^{\wedge} 2 * a-b^{\wedge} 3-c^{\wedge} 3+(a+b) * c^{\wedge} 2+\left(a^{\wedge} 2-\right.\right.$ 2*b*a+b^2) *c) /c/b/a) ;

$$
-\frac{(a+b-c)(a-b+c)(a-b-c)}{4 c b a}
$$

3.10 Miscellaneous
6.201
$A D$ and $A E$ are the altitude and the median of the triangle $A B C$; the parallels through E to $A B, A C$ meet $A D$ in P, Q; Show that ADPQ are a harmonic range ($|A P||D Q|=|A Q||D P|)$

6.202

If $\mathrm{E}, \mathrm{F}, \mathrm{G}$ are the midpoints of the sides of the triangle ABC , and G and H are the intersections of AD and ED with CF, show that CHGF form a harmonic range ($|\mathrm{CH}||\mathrm{FG}|=|\mathrm{FC}||\mathrm{GH}|$)

$$
\begin{aligned}
\mathrm{FG} & \Rightarrow \sqrt{\frac{\mathrm{a}^{2}}{18}+\frac{\mathrm{b}^{2}}{18}-\frac{c^{2}}{36}} \\
\mathrm{CH} & \Rightarrow \sqrt{\frac{\mathrm{a}^{2}}{8}+\frac{\mathrm{b}^{2}}{8}-\frac{c^{2}}{16}} \\
\mathrm{GH} & \Rightarrow \sqrt{\frac{\mathrm{a}^{2}}{72}+\frac{b^{2}}{72}-\frac{c^{2}}{144}} \\
\mathrm{FC} & \Rightarrow \sqrt{\frac{\mathrm{a}^{2}}{2}+\frac{\mathrm{b}^{2}}{2}-\frac{c^{2}}{4}} \\
\mathrm{CH} \cdot \mathrm{FG} & \Rightarrow \frac{\mathrm{a}^{2}}{12}+\frac{\mathrm{b}^{2}}{12}-\frac{\mathrm{c}^{2}}{24} \\
\mathrm{FC} \cdot \mathrm{GH} & \Rightarrow \frac{\mathrm{a}^{2}}{12}+\frac{\mathrm{b}^{2}}{12}-\frac{\mathrm{c}^{2}}{24}
\end{aligned}
$$

6.203

Let P be a point in the plane of the triangle $A B C$. Let $A 1$ be the intersection of $B C$ and $A P, B 1$ be the intersection of $B P$ with $A C$ and $C 1$ be the intersection of $C P$ with $A B$. Further, let $A 2$ be the intersection of $B C$ with $B 1 C 1, B 2$ be the intersection of $A C$ with $A 1 C 1$ and $C 2$ the intersection of $A B$ with $A 1 B 1$.

Show that $\mathrm{A} 2, \mathrm{~B} 2$ and C 2 are collinear.

6.204

Let P be a point in the plane of the triangle $A B C$. Let $A 1$ be the intersection of $B C$ and $A P, B 1$ be the intersection of $B P$ with $A C$ and $C 1$ be the intersection of $C P$ with $A B$. Further, let $A 2$ be the intersection of $B C$ with $B 1 C 1$. Show that $A 1, A 2, B, C$ form a harmonic sequence ($|A 1 B||A 2 C|=|A 1 C||A 2 B|)$

$$
\begin{gathered}
z_{2}: \frac{A 1 B \cdot A 2 C}{A 1 C \cdot A 2 B} \Rightarrow 1 \\
A 1 B \Rightarrow \frac{\sqrt{a^{2}-2 \cdot a \cdot b+b^{2}+c^{2}} \cdot|a| \cdot|y|}{|c \cdot x+y \cdot(a-b)|} \\
A 2 C \Rightarrow \frac{\sqrt{a^{2}-2 \cdot a \cdot b+b^{2}+c^{2}} \cdot|-c \cdot x+b \cdot y|}{|-c \cdot x+y \cdot(a+b)|} \\
A 1 C \Rightarrow \frac{\sqrt{a^{2}-2 \cdot a \cdot b+b^{2}+c^{2}} \cdot|-c \cdot x+b \cdot y|}{|c \cdot x+y \cdot(a-b)|} \\
A 2 B \Rightarrow \frac{\sqrt{a^{2}-2 \cdot a \cdot b+b^{2}+c^{2}} \cdot|a| \cdot|y|}{|-c \cdot x+y \cdot(a+b)|}
\end{gathered}
$$

6.205

Let $A D, B E, C F$ be the altitudes of triangle $A B C$. If $E F$ meets $B C$ in M, show that $M B D C$ are a harmonic range.

$$
\frac{\mathrm{CD} \cdot \mathrm{MB}}{\mathrm{BD} \cdot \mathrm{MC}} \Rightarrow \begin{gathered}
1 \\
\mid \mathrm{a}^{2}+\mathrm{b}^{2}>\mathrm{c}^{2} \\
\\
\mid \mathrm{a}^{2}+\mathrm{c}^{2}>\mathrm{b}^{2}
\end{gathered}
$$

The circle having for diameter the median AA1 of the triangle ABC meets the circumcircle in L. Let AL meet $B C$ in K. Show that KDBC is a harmonic range.

6.207

Using the diagram of 6.203 , let K be the midpoint of $A, A 1$ and L the midpoint of $B, B 1$ and M the midpoint of $\mathrm{C}, \mathrm{C} 1$. Show $\mathrm{K}, \mathrm{L}, \mathrm{M}$ are collinear.

References

[1] Chou, S. C., Gao, X. S., \& Zhang, J. (1994). Machine proofs in geometry: Automated production of readable proofs for geometry theorems. World Scientific.

